Skip to main content

Vercel AI SDK Integration

Integration Status: In Progress - This integration is currently under development. The PR is pending merge: vercel/ai#8976

Integration Preview

See how 0G integrates with the Vercel AI SDK for modern web applications: Vercel AI SDK 0G Integration - React Components and Hooks React components and hooks for building conversational UIs with 0G Vercel AI SDK 0G Integration - Streaming and Real-time Features Streaming implementation and real-time chat features

Overview

The Vercel AI SDK is a React-first framework for building conversational user interfaces with streaming capabilities and full type safety. The 0G integration brings decentralized compute to modern web applications.

What is Vercel AI SDK?

The Vercel AI SDK is designed for building AI-powered applications with:
  • React Integration: Built-in hooks for chat interfaces and streaming
  • Type Safety: Full TypeScript support with proper type inference
  • Streaming: Real-time response streaming for better UX
  • Edge Runtime: Optimized for Vercel’s edge functions and serverless

Installation

Once the integration is merged, you’ll be able to install it with:
npm install @ai-sdk/nebula

Supported Models

ModelProvider AddressBest For
llama-3.3-70b-instruct0xf07240Efa67755B5311bc75784a061eDB47165DdGeneral conversations, content generation
deepseek-r1-70b0x3feE5a4dd5FDb8a32dDA97Bed899830605dBD9D3Complex reasoning, analysis, problem-solving

Basic Usage

Simple Text Generation

import { createZG } from '@ai-sdk/0g';
import { generateText } from 'ai';

// Initialize 0G provider
const zg = createZG({
  providerAddress: '0xf07240Efa67755B5311bc75784a061eDB47165Dd', // llama-3.3-70b-instruct
  privateKey: process.env.ZG_PRIVATE_KEY!
});

// Generate text
const { text } = await generateText({
  model: zg('llama-3.3-70b-instruct'),
  prompt: 'Explain the benefits of decentralized AI compute.'
});

console.log(text);

Streaming Text Generation

import { streamText } from 'ai';

const { textStream } = await streamText({
  model: zg('llama-3.3-70b-instruct'),
  prompt: 'Write a comprehensive guide about blockchain technology.'
});

for await (const textPart of textStream) {
  process.stdout.write(textPart);
}

React Integration

Chat Interface with useChat Hook

'use client';

import { useChat } from 'ai/react';

export default function ChatComponent() {
  const { messages, input, handleInputChange, handleSubmit, isLoading } = useChat({
    api: '/api/chat',
  });

  return (
    <div className="flex flex-col w-full max-w-md py-24 mx-auto stretch">
      <div className="space-y-4">
        {messages.map(message => (
          <div
            key={message.id}
            className={`flex ${
              message.role === 'user' ? 'justify-end' : 'justify-start'
            }`}
          >
            <div
              className={`rounded-lg px-4 py-2 max-w-sm ${
                message.role === 'user'
                  ? 'bg-blue-500 text-white'
                  : 'bg-gray-200 text-gray-900'
              }`}
            >
              {message.content}
            </div>
          </div>
        ))}
      </div>

      <form onSubmit={handleSubmit} className="mt-4">
        <div className="flex space-x-2">
          <input
            className="flex-1 p-2 border border-gray-300 rounded"
            value={input}
            placeholder="Type your message..."
            onChange={handleInputChange}
            disabled={isLoading}
          />
          <button
            type="submit"
            disabled={isLoading}
            className="px-4 py-2 bg-blue-500 text-white rounded disabled:opacity-50"
          >
            {isLoading ? 'Sending...' : 'Send'}
          </button>
        </div>
      </form>
    </div>
  );
}

API Route Implementation

// app/api/chat/route.ts
import { createZG } from '@ai-sdk/0g';
import { streamText } from 'ai';

const zg = createZG({
  providerAddress: '0xf07240Efa67755B5311bc75784a061eDB47165Dd',
  privateKey: process.env.ZG_PRIVATE_KEY!
});

export async function POST(req: Request) {
  const { messages } = await req.json();

  const result = await streamText({
    model: zg('llama-3.3-70b-instruct'),
    messages,
    system: 'You are a helpful AI assistant powered by decentralized compute.',
    temperature: 0.7,
    maxTokens: 1000
  });

  return result.toDataStreamResponse();
}

Advanced Features

Tool Usage

Build AI applications that can use tools and function calling:
import { generateText, tool } from 'ai';
import { z } from 'zod';

const { text } = await generateText({
  model: zg('deepseek-r1-70b'), // Use deepseek for reasoning with tools
  prompt: 'What is the weather like in San Francisco and New York?',
  tools: {
    getWeather: tool({
      description: 'Get the current weather for a location',
      parameters: z.object({
        location: z.string().describe('The location to get weather for'),
      }),
      execute: async ({ location }) => {
        // Implement weather API call
        const response = await fetch(`https://api.weather.com/v1/current?location=${location}`);
        const data = await response.json();
        return {
          location,
          temperature: data.temperature,
          condition: data.condition,
          humidity: data.humidity
        };
      },
    }),
    
    searchWeb: tool({
      description: 'Search the web for information',
      parameters: z.object({
        query: z.string().describe('The search query'),
      }),
      execute: async ({ query }) => {
        // Implement web search
        return { results: [`Search results for: ${query}`] };
      },
    }),
  },
});

console.log(text);

Multi-Modal Support

Work with different types of content:
import { generateText } from 'ai';

// Text + Image analysis
const { text } = await generateText({
  model: zg('llama-3.3-70b-instruct'),
  messages: [
    {
      role: 'user',
      content: [
        { type: 'text', text: 'What do you see in this image?' },
        {
          type: 'image',
          image: '...'
        }
      ]
    }
  ]
});

Structured Output

Generate structured data with type safety:
import { generateObject } from 'ai';
import { z } from 'zod';

const { object } = await generateObject({
  model: zg('deepseek-r1-70b'),
  prompt: 'Generate a user profile for a software developer',
  schema: z.object({
    name: z.string(),
    age: z.number(),
    skills: z.array(z.string()),
    experience: z.object({
      years: z.number(),
      level: z.enum(['junior', 'mid', 'senior']),
    }),
    projects: z.array(z.object({
      name: z.string(),
      description: z.string(),
      technologies: z.array(z.string()),
    })),
  }),
});

console.log(object);
// Fully typed object with IntelliSense support

Streaming Patterns

Server-Sent Events

// app/api/stream/route.ts
import { streamText } from 'ai';

export async function POST(req: Request) {
  const { prompt } = await req.json();

  const result = await streamText({
    model: zg('llama-3.3-70b-instruct'),
    prompt,
  });

  return new Response(result.textStream, {
    headers: {
      'Content-Type': 'text/plain; charset=utf-8',
    },
  });
}

Custom Streaming Hook

import { useState } from 'react';

function useStreamingText() {
  const [text, setText] = useState('');
  const [isStreaming, setIsStreaming] = useState(false);

  const streamText = async (prompt: string) => {
    setIsStreaming(true);
    setText('');

    try {
      const response = await fetch('/api/stream', {
        method: 'POST',
        headers: { 'Content-Type': 'application/json' },
        body: JSON.stringify({ prompt }),
      });

      const reader = response.body?.getReader();
      if (!reader) return;

      while (true) {
        const { done, value } = await reader.read();
        if (done) break;

        const chunk = new TextDecoder().decode(value);
        setText(prev => prev + chunk);
      }
    } finally {
      setIsStreaming(false);
    }
  };

  return { text, isStreaming, streamText };
}

// Usage in component
export default function StreamingDemo() {
  const { text, isStreaming, streamText } = useStreamingText();

  return (
    <div>
      <button onClick={() => streamText('Explain quantum computing')}>
        Start Streaming
      </button>
      <div className="mt-4">
        {text}
        {isStreaming && <span className="animate-pulse"></span>}
      </div>
    </div>
  );
}

Configuration Options

Model Selection

// For creative content generation
const creativeModel = zg('llama-3.3-70b-instruct', {
  temperature: 0.8,
  maxTokens: 2000,
  topP: 0.9
});

// For analytical tasks
const analyticalModel = zg('deepseek-r1-70b', {
  temperature: 0.1,
  maxTokens: 3000,
  topP: 0.95
});

Network Settings

const zg = createZG({
  providerAddress: '0xf07240Efa67755B5311bc75784a061eDB47165Dd',
  privateKey: process.env.ZG_PRIVATE_KEY!,
  rpcUrl: 'https://custom-rpc.0g.ai',
  timeout: 60000, // 60 seconds
  maxRetries: 3
});

Migration from OpenAI

Migrating from OpenAI to 0G is straightforward:
import OpenAI from 'openai';
import { OpenAIStream, StreamingTextResponse } from 'ai';

const openai = new OpenAI({
  apiKey: process.env.OPENAI_API_KEY!,
});

export async function POST(req: Request) {
  const { messages } = await req.json();

  const response = await openai.chat.completions.create({
    model: 'llama-3.3-70b-instruct',
    stream: true,
    messages,
  });

  const stream = OpenAIStream(response);
  return new StreamingTextResponse(stream);
}

Deployment

Vercel Deployment

// vercel.json
{
  "functions": {
    "app/api/chat/route.ts": {
      "maxDuration": 60
    }
  },
  "env": {
    "ZG_PRIVATE_KEY": "@zg-private-key"
  }
}

Environment Variables

# .env.local
ZG_PRIVATE_KEY=your-private-key-here
NEXT_PUBLIC_APP_URL=https://your-app.vercel.app

Benefits of 0G + Vercel AI SDK

React-First Design

Built specifically for React applications with hooks and components

Type Safety

Full TypeScript support with proper type inference and validation

Edge Optimization

Optimized for Vercel’s edge runtime and serverless functions

Decentralized Compute

No dependency on centralized AI providers

Example Applications

AI-Powered Blog

import { generateText } from 'ai';
import { createZG } from '@ai-sdk/0g';

const zg = createZG({
  providerAddress: '0xf07240Efa67755B5311bc75784a061eDB47165Dd',
  privateKey: process.env.ZG_PRIVATE_KEY!
});

export default async function BlogPost({ params }: { params: { topic: string } }) {
  const { text: content } = await generateText({
    model: zg('llama-3.3-70b-instruct'),
    prompt: `Write a comprehensive blog post about ${params.topic}. Include an introduction, main points, and conclusion.`,
    temperature: 0.7
  });

  return (
    <article className="prose lg:prose-xl mx-auto">
      <h1 className="capitalize">{params.topic.replace('-', ' ')}</h1>
      <div className="whitespace-pre-wrap">{content}</div>
    </article>
  );
}

Real-time Code Assistant

'use client';

import { useChat } from 'ai/react';
import { Prism as SyntaxHighlighter } from 'react-syntax-highlighter';

export default function CodeAssistant() {
  const { messages, input, handleInputChange, handleSubmit } = useChat({
    api: '/api/code-assistant',
    initialMessages: [
      {
        id: '1',
        role: 'system',
        content: 'You are a helpful coding assistant. Provide code examples and explanations.'
      }
    ]
  });

  return (
    <div className="flex h-screen">
      <div className="flex-1 flex flex-col">
        <div className="flex-1 overflow-auto p-4 space-y-4">
          {messages.map(message => (
            <div key={message.id} className={`flex ${message.role === 'user' ? 'justify-end' : 'justify-start'}`}>
              <div className={`max-w-3xl ${message.role === 'user' ? 'bg-blue-100' : 'bg-gray-100'} rounded-lg p-4`}>
                {message.content.includes('```') ? (
                  <div>
                    {message.content.split('```').map((part, index) => 
                      index % 2 === 0 ? (
                        <p key={index}>{part}</p>
                      ) : (
                        <SyntaxHighlighter key={index} language="javascript">
                          {part}
                        </SyntaxHighlighter>
                      )
                    )}
                  </div>
                ) : (
                  <p>{message.content}</p>
                )}
              </div>
            </div>
          ))}
        </div>
        
        <form onSubmit={handleSubmit} className="p-4 border-t">
          <input
            value={input}
            onChange={handleInputChange}
            placeholder="Ask about code, request examples, or get help debugging..."
            className="w-full p-2 border rounded"
          />
        </form>
      </div>
    </div>
  );
}

Getting Started

  1. Wait for the integration to be merged - Track progress at vercel/ai#8976
  2. Install the package once available: npm install @ai-sdk/nebula
  3. Set up your environment with your 0G private key
  4. Choose your model based on your use case
  5. Start building modern AI applications with React!

Community & Support

  • GitHub: vercel/ai
  • Vercel AI SDK Docs: sdk.vercel.ai
  • 0G Discord: Join for integration-specific support
  • Examples: Check the integration repository for more examples once merged